Bibliometric Analysis on Precision Agriculture Technology

Authors

  • Loso Judijanto IPOSS Jakarta, Indonesia
  • Tera Lesmana Ciputra University

DOI:

https://doi.org/10.58812/wsa.v2i02.1205

Keywords:

Precision Agriculture, Bibliometric Analysis, VOSviewer

Abstract

This study employs a bibliometric analysis using VOSviewer to visualize the authorship network within the domain of precision agriculture, identifying key researchers and their collaborative relationships. By mapping the connections based on publications from a specified time period, the analysis highlights the central figures like Erickson, B, who play pivotal roles in the network and reveals the interlinkages among various contributors. The study provides insights into the structural dynamics of research collaborations and elucidates the influence patterns among the scholars. Despite the inherent limitations such as database selection bias and the static nature of the bibliometric snapshot, the results offer valuable implications for enhancing research collaboration, academic planning, and strategic positioning within the scholarly community. This approach not only aids in recognizing influential entities and emerging talents but also assists institutions and funders in making informed decisions that could drive impactful research in precision agriculture.

References

F. Alaieri, “Precision Agriculture based on Machine Learning and Remote Sensing Techniques,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 3, pp. 14206–14211, 2024.

J. E. Relf-Eckstein, A. T. Ballantyne, and P. W. B. Phillips, “Farming Reimagined: A case study of autonomous farm equipment and creating an innovation opportunity space for broadacre smart farming,” NJAS-Wageningen J. Life Sci., vol. 90, p. 100307, 2019.

A. Soussi, E. Zero, R. Sacile, D. Trinchero, and M. Fossa, “Smart Sensors and Smart Data for Precision Agriculture: A Review,” Sensors, vol. 24, no. 8, p. 2647, 2024.

R. Bongiovanni and J. Lowenberg-DeBoer, “Precision agriculture and sustainability,” Precis. Agric., vol. 5, pp. 359–387, 2004.

I. Ioja, V. Nedeff, M. Agop, F. M. Nedeff, and C. Tomozei, “Software uses in precision agriculture based on drone image processing–A review,” in 2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), IEEE, 2024, pp. 1–6.

T. A. Shaikh, T. Rasool, and F. R. Lone, “Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming,” Comput. Electron. Agric., vol. 198, p. 107119, 2022.

J. P. Molin, H. C. Bazame, L. Maldaner, L. de P. Corredo, M. Martello, and M. Martello, “Precision agriculture and the digital contributions for site-specific management of the fields,” Rev. Ciência Agronômica, vol. 51, no. spe, p. e20207720, 2020.

D. K. Maurya et al., “A Review on Precision Agriculture: An Evolution and Prospect for the Future,” Int. J. Plant Soil Sci., vol. 36, no. 5, pp. 363–374, 2024.

L. Judijanto and R. Auliani, “Bibliometric Analysis of Biotechnology Development,” West Sci. Nat. Technol., vol. 2, no. 02, pp. 108–117, 2024.

C. M. Sterie, L. I. Petre, G.-D. Stoica, and E. A. Dumitru, “Assessing the Impact of Digitisation on Progress in Agriculture: A Bibliometric Analysis,” in Proceedings of the International Conference on Business Excellence, 2024, pp. 1724–1733.

L. Judijanto, F. Sarie, and S. Safruddin, “Bibliometric Analysis on Agronomy Topics,” West Sci. Agro, vol. 2, no. 02, pp. 77–86, 2024.

A. McBratney, B. Whelan, T. Ancev, and J. Bouma, “Future directions of precision agriculture,” Precis. Agric., vol. 6, pp. 7–23, 2005.

F. J. Pierce and P. Nowak, “Aspects of precision agriculture,” Adv. Agron., vol. 67, pp. 1–85, 1999.

S. Fan and X. Zhang, “Production and productivity growth in Chinese agriculture: New national and regional measures,” Econ. Dev. Cult. Change, vol. 50, no. 4, pp. 819–838, 2002.

A. N. Cambouris, B. J. Zebarth, N. Ziadi, and I. Perron, “Precision agriculture in potato production,” Potato Res., vol. 57, pp. 249–262, 2014.

K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in agriculture: A review,” Sensors, vol. 18, no. 8, p. 2674, 2018.

D. J. Mulla, “Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps,” Biosyst. Eng., vol. 114, no. 4, pp. 358–371, 2013.

T. Tian et al., “agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update,” Nucleic Acids Res., vol. 45, no. W1, pp. W122–W129, 2017.

A. Lambert, A. G. Hallar, M. Garcia, C. Strong, E. Andrews, and J. L. Hand, “Dust impacts of rapid agricultural expansion on the Great Plains,” Geophys. Res. Lett., vol. 47, no. 20, p. e2020GL090347, 2020.

G. P. Robertson et al., “Nitrogen–climate interactions in US agriculture,” Biogeochemistry, vol. 114, pp. 41–70, 2013.

J. Lowenberg‐DeBoer and B. Erickson, “Setting the record straight on precision agriculture adoption,” Agron. J., vol. 111, no. 4, pp. 1552–1569, 2019.

J. Stone and S. Rahimifard, “Resilience in agri-food supply chains: a critical analysis of the literature and synthesis of a novel framework,” Supply Chain Manag. An Int. J., vol. 23, no. 3, pp. 207–238, 2018.

J. J. Tang and K. E. Karim, “Big Data in Business Analytics: Implications for the Audit Profession.,” CPA J., vol. 87, no. 6, 2017.

C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: a review,” Precis. Agric., vol. 13, pp. 693–712, 2012.

K. G. Cassman, “Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture,” Proc. Natl. Acad. Sci., vol. 96, no. 11, pp. 5952–5959, 1999.

N. Zhang, M. Wang, and N. Wang, “Precision agriculture—a worldwide overview,” Comput. Electron. Agric., vol. 36, no. 2–3, pp. 113–132, 2002.

R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science (80-. )., vol. 327, no. 5967, pp. 828–831, 2010.

V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric., vol. 44, no. 1, pp. 71–91, 2004.

A.-K. Mahlein, “Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping,” Plant Dis., vol. 100, no. 2, pp. 241–251, 2016.

Downloads

Published

2024-08-30

How to Cite

Judijanto, L., & Lesmana, T. (2024). Bibliometric Analysis on Precision Agriculture Technology . West Science Agro, 2(03), 144–156. https://doi.org/10.58812/wsa.v2i02.1205