Influence of IoT, Edge Computing, and Real-Time Analytics Systems on Optimizing Resource Management in the Indramayu Fisheries Industry
DOI:
https://doi.org/10.58812/wsis.v2i11.1446Keywords:
IoT, Edge Computing, Real-Time Analytics, Resource Management, Fisheries IndustryAbstract
The fisheries industry in Indramayu faces challenges in optimizing resource management due to inefficiencies and a lack of technological integration. This study examines the influence of the Internet of Things (IoT), Edge Computing, and Real-Time Analytics Systems on resource management optimization in the fisheries sector. Using a quantitative approach, data were collected from 150 respondents and analyzed with Structural Equation Modeling-Partial Least Squares (SEM-PLS 3). The results reveal that IoT has the most significant impact on resource management optimization, followed by Real-Time Analytics Systems and Edge Computing. The integration of these technologies demonstrates a synergistic effect, enabling real-time data collection, efficient processing, and actionable insights. These findings underscore the transformative potential of digital technologies in fostering sustainable and efficient resource utilization. Practical recommendations include investing in infrastructure, enhancing technical skills, and promoting technology adoption through policy support. This research contributes to the growing body of knowledge on digital transformation in resource-intensive industries.
References
J. D. Zunit and Z. Zora, “Analisis Hukum Internasional Terhadap Allowable Catch Dalam Upaya Pencegahan Praktik Overfishing Dan Penerapannya Di Indonesia,” Nagari Law Rev., vol. 7, no. 3, pp. 606–615, 2024.
J. J. B. Suseno, T. F. M. Paksi, and Y. Yusriando, “Role of the Financial Service Authority of the Republic of Indonesia in Determining Financial Technology Crime as Bijzondere Toestanden,” Al-Bayyinah, vol. 8, no. 1, pp. 76–98, 2024.
Y. Aruri, M. I. T. Sunariya, and A. Mardiansyah, “Analysis of recommendations for developing sustainable fishing areas based on geographic information systems: the integrated Center of Marine and Fisheries (SKPT) Mimika case study,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2024, p. 12035.
N. P. SINAGA, “Perlindungan Hukum Bagi Konsumen Yang Data Pribadinya Diperjualbelikan Di Aplikasi Fintech Peer-To-Peer Lending,” 2021.
E. Fauziningrum, A. S. Sumantri, I. S. Dewi, and I. N. C. Asmara, “Sosialisasi Alat Bantu Penangkap Ikan Berdasarkan Permen KP Nomor 18 Tahun 2021 Bagi Nelayan Tambaklorok,” Aspir. Publ. Has. Pengabdi. dan Kegiat. Masy., vol. 2, no. 3, pp. 19–26, 2024.
A. H. Ikevuje, D. C. Anaba, and U. T. Iheanyichukwu, “Exploring sustainable finance mechanisms for green energy transition: A comprehensive review and analysis,” Financ. Account. Res. J., vol. 6, no. 7, pp. 1224–1247, 2024.
M. Kadhafi, “Maritime Safety in the Digital Era as the Role of Weather Monitoring and Prediction Technology,” Marit. Park J. Marit. Technol. Soc., pp. 93–98, 2024.
M. Visveshwarappa, “Opportunities and Challenges of Digital Connectivity for Industrial Internet of Things,” AI-Driven IoT Syst. Ind. 4.0, pp. 97–102, 2024.
G. Srivastava, “Impact of CSR on company’s reputation and brand image,” Glob. J. Enterp. Inf. Syst., vol. 11, no. 1, pp. 8–13, 2019.
S. Supriandi, “PENGARUH MODAL SOSIAL, KAPABILITAS FINANSIAL, ORIENTASI KEWIRAUSAHAAN TERHADAP DAYA SAING BISNIS BERKELANJUTAN SERTA IMPLIKASINYA PADA KINERJA UMKM INDUSTRI KULINER DI KOTA SUKABUMI.” Nusa Putra, 2022.
E. N. Amora and J. Cuizon, “Utilizing IOT and Geospatial Analytics for Sustainable Fisheries Management,” Recoletos Multidiscip. Res. J., vol. 12, no. 1, pp. 195–214, 2024.
K. Li et al., “Deciphering modern customer loyalty: a machine learning approach,” in International Conference on Internet of Things and Machine Learning (IoTML 2023), SPIE, 2023, pp. 393–400.
G.-W. Bock, R. W. Zmud, Y.-G. Kim, and J.-N. Lee, “Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate,” MIS Q., pp. 87–111, 2005.
H. Matsuda, “Common Concepts and Theories between Fisheries Management and Other Environmental Issues,” 2024.
L. Du, “Understanding and Enhancing Fishing Practices for A Sustainable Future,” Highlights Sci. Eng. Technol., vol. 99, pp. 227–231, 2024.
S. Bakri, H. Buchari, E. L. Widiastuti, P. Parjito, and S. H. Sitorus, “Measuring the Sustainability of Marine Ecotourism in Kiluan Marine Tourism Park, Lampung Province, Indonesia,” Environ. Ecol. Res., vol. 11, no. 2, pp. 392–405, 2023, doi: 10.13189/eer.2023.110213.
M. S. Ummah, “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” Sustain., vol. 11, no. 1, pp. 1–14, 2019, [Online]. Available: http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI
H. Singh, D. Ranjan, P. Verma, A. K. Upadhyay, P. Kumar, and A. Singh, “Current Issues with Fish and Fisheries Sector: Challenges and Solutions,” Biot. Res. Today, vol. 6, no. 1, pp. 39–45, 2024.
T. Buana and M. Aldin, “PERAN KELEMBAGAAN LOKAL DALAM PENGELOLAAN SUMBERDAYA LAUT SEBAGAI UPAYA PENINGKATAN PEREKONOMIAN MASYARAKAT PESISIR (Studi Kasus di Kawasan Taman Nasional Wakatobi (TNW)),” J. Ilm. Penyul. dan Pengemb. Masy., vol. 4, no. 2, pp. 156–163, 2024.
A. Londhe, R. Apare, and R. Borhade, “Aqua Status Prediction Using IoT and Optimization in Aquaculture: A Comprehensive Review,” in 2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon), IEEE, 2024, pp. 1–4.
S. G. Rahul, R. Rajkumar, Y. K. Reddy, N. Koushik, V. S. Manikannta, and D. Subitha, “Integrating IoT and Deep Learning for Smart Aquaculture Management in Freshwater Aquariums,” in 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), IEEE, 2024, pp. 321–326.
F. P. E. Putra, U. Ubaidi, R. N. Saputra, F. M. Haris, and S. N. R. Barokah, “Application of Internet of Things Technology in Monitoring Water Quality in Fishponds,” Brill. Res. Artif. Intell., vol. 4, no. 1, pp. 356–361, 2024.
R. Ezhilarasie, I. MohanRaj, T. G. Ramakrishnan, V. Madhavan, K. Narayan, and A. Umamakeswari, “Edge computing solutions to support computation offloading for IoT applications,” J. Intell. Fuzzy Syst., no. Preprint, pp. 1–13.
J. Liao and H. Xie, “Internet of Things Data Processing and Analysis Based on Edge Computing,” in 2024 Second International Conference on Data Science and Information System (ICDSIS), IEEE, 2024, pp. 1–5.
R. R. Asaad, A. A. Hani, A. B. Sallow, S. M. Abdulrahman, H. B. Ahmad, and R. M. Subhi, “A Development of Edge Computing Method in Integration with IOT System for Optimizing and To Produce Energy Efficiency System,” in 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), IEEE, 2024, pp. 835–840.
H. Kuchuk and E. Malokhvii, “INTEGRATION OF IOT WITH CLOUD, FOG, AND EDGE COMPUTING: A REVIEW,” Adv. Inf. Syst., vol. 8, no. 2, pp. 65–78, 2024.
B. Kelly, “The Impact of Edge Computing on Real-Time Data Processing,” Int. J. Comput. Eng., vol. 5, no. 5, pp. 44–58, 2024.
X. Fan, “Real-Time Analytics: Efficiency And Competitiveness in Supply Chain Management,” Highlights Business, Econ. Manag., vol. 20, pp. 441–446, 2023.
A. B. Amale, K. K. Bajaj, M. D. Shamout, L. C. C. Ramírez, M. L. M. Vásquez, and J. R. Y. Torrealva, “Real-Time Analytics with Big Data and Streaming Computation,” in 2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC), IEEE, 2023, pp. 1668–1673.
N. Stojanovic and S. Chaudhary, “Real-time water quality monitoring in aquaculture using IoT sensors and cloud-based analytics,” Res. J. Comput. Syst. Eng., vol. 4, no. 2, pp. 174–187, 2023.
K. Sharma, B. G. Madhavi, A. Goyal, D. Parashar, L. Shrotriya, and A. Gupta, “Real-Time Data Analysis, Significance, Architectures and Applications for Informed Decision-Making,” in 2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC), IEEE, 2023, pp. 298–302.
M. F. Zahra, “Manajemen Data Real-Time Untuk Aplikasi Internet Of Things (IOT),” J. Penelit. Sist. Inf., vol. 2, no. 2, pp. 111–120, 2024.
A. A. Zainuddin et al., “Selective of IoT Applications for Water Quality Monitoring in Malaysia,” Int. J. Perceptive Cogn. Comput., vol. 10, no. 2, pp. 8–16, 2024.
S. Das and P. Raj, “Edge Computing and Analytics: A New Computing Paradigm for Better User Experience,” in Industry Automation: The Technologies, Platforms and Use Cases, River Publishers, pp. 361–391.
C. Chae, H. Kim, B. Sim, D. Yoon, and J. Kang, “Poster: Real-Time Data-Driven Optimization in Semiconductor Manufacturing: An Edge-Computing System Architecture for Continuous Model Improvement,” in Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services, 2024, pp. 630–631.
A. H. Ikevuje, D. C. Anaba, and U. T. Iheanyichukwu, “Optimizing supply chain operations using IoT devices and data analytics for improved efficiency,” Magna Sci. Adv. Res. Rev., vol. 11, no. 2, pp. 70–79, 2024.
U. C. Anozie, K. Pieterson, O. B. Onyenahazi, U. O. Chukwuebuka, and P. C. Ekeocha, “Integration of IoT technology in lean manufacturing for real-time supply chain optimization,” Int. J. Sci. Res. Arch., vol. 12, no. 2, pp. 1948–1957, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bekti Utomo, Rahmi Setiawati, Arnes Yuli Vandika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.