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 This research investigates the impact of Weather Prediction, Resource 

Management, and Land Optimization on the adoption of Big Data 

Analytics in agricultural land utilization within the agrarian region of 

West Java. Employing a quantitative approach, the study integrates 

measurement model analysis, structural equation modeling, 

demographic profiling, and model fit assessment to comprehensively 

explore the intricate dynamics of technological adoption in agriculture. 

Results indicate that Land Optimization, Resource Management, and 

Weather Prediction significantly influence the adoption of Big Data 

Analytics. Demographic factors such as gender, age, education, and 

farming experience demonstrate varying correlations with key 

variables. The model exhibits strong fit, and approximately 60.2% of 

the variance in Big Data Analytics adoption is explained by the 

combined influence of the identified factors. This study contributes 

nuanced insights to inform policy and practice for sustainable and 

technology-driven agriculture in West Java. 
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1. INTRODUCTION  

The agrarian region of West Java in 

Indonesia plays a crucial role in ensuring 

national food security, economic stability, and 

sustainable development. The region has 

historically been an agricultural area and is 

known as a food granary, with high fertility 

rates and rich soil nutrients [1]. The 

agricultural sector in West Java serves as a 

source of food security, poverty reduction, 

employment, and community income, 

contributing significantly to the national and 

regional economy [2]. Reviving and utilizing 

local agricultural traditions, such as "talun-

kebun" or permaculture, can help increase 

food production in a sustainable manner and 

rehabilitate critical land [3]. However, there 

are challenges ahead, as studies predict a 

future food crisis due to the decrease in 

growing areas and increasing food demand 

[4]. Therefore, it is crucial to develop 

sustainable agriculture and rural 

development strategies in the region to 

address population pressure, increase local 

economic growth, promote social equity, and 

protect the environment [5]. 

In recent years, the integration of big 

data analytics in the agricultural sector has 

brought about transformative changes. This 
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shift offers opportunities to optimize 

decision-making processes, improve resource 

utilization, and drive efficient and sustainable 

agricultural practices. Understanding the 

interplay between weather prediction, 

resource management, land optimization, and 

the application of big data analytics is crucial 

for developing a resilient and productive 

agricultural sector in West Java. The use of big 

data technology can determine algorithm 

models for agricultural big data technology 

and the application system of the agricultural 

Internet of Things, leading to advancements 

in agricultural planting technology, economic 

management, and industry upgrading [6]. 

Additionally, data mining and machine 

learning techniques can be employed to 

analyze agricultural conditions and scenarios, 

optimize parameters, and maximize crop 

yield [7]. By adopting digital technologies and 

big data processing, intelligent agriculture 

can provide decision-making support for 

agricultural activities, improving 

productivity and economic returns [8]. The 

purpose of this research is more than 

exploratory; it is to delve deeper into the 

complex relationships within West Java's 

agricultural dynamics.  

 

2. LITERATURE REVIEW  

2.1 Weather Prediction and 

Agriculture 

Accurate weather prediction is crucial 

for farmers as it enables timely and precise 

decisions regarding agricultural planning and 

management. Improved weather prediction 

technologies can mitigate risks associated 

with unpredictable weather patterns, offering 

a proactive approach to agricultural practices. 

This literature review provides insights into 

the significance of weather prediction in 

agricultural productivity and its potential to 

bring transformative change to West Java's 

agricultural landscape [9], [10]. 

2.2 Resource Management in 

Agriculture 

Efficient resource management is 

crucial for sustainable agricultural practices, 

particularly in the context of West Java. 

Studies have highlighted the role of resource 

management in optimizing water, fertilizers, 

and pesticides, which are essential for crop 

health and yield [11]. Advanced analytics can 

play a pivotal role in optimizing the allocation 

and utilization of these resources, leading to 

increased productivity and ecological 

sustainability in farming practices [12],  

2.3 Land Optimization Strategies 

Optimizing land use is crucial for 

maximizing agricultural yields. Various 

strategies, such as precision farming and crop 

rotation, have been extensively studied to 

achieve this goal. Precision agriculture and 

variable rate application technology can help 

increase yield while reducing fertilizer use 

[13]. Additionally, the use of efficient machine 

learning models can provide personalized 

crop and fertilizer recommendations to 

farmers, optimizing their yield and increasing 

sustainability [14]. The rational approach to 

land use, considering ecological efficiency 

and scientifically grounded operational use of 

land resources, is economically and socially 

beneficial for agricultural producers [15]. 

Furthermore, the development of control 

algorithms suitable for agriculture can 

improve efficiency. For example, a 

mechanistic open model of lettuce growth has 

been proposed, which demonstrates 

increased crop uniformity and yield without 

increasing nitrogen use [16]. These studies 

highlight the importance of implementing 

land optimization techniques to enhance 

agricultural productivity and sustainability. 

2.4 Big Data Analytics in Agriculture 

The integration of big data analytics 

in agriculture has the potential to 

revolutionize traditional farming practices 

and enhance decision-making processes. 

Smart agriculture, driven by Internet of 

Things (IoT) technologies, has emerged as a 

key application area for big data analytics. 

Various data reduction techniques, such as 

sampling, quantization, and deduplication, 

have been investigated to optimize IoT data 

transmission in smart agriculture systems 

[17]. Additionally, Probabilistic Data 

Structures (PDS) have been identified as 

effective solutions for handling the copious 

amounts of data generated in smart 
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agriculture, enabling real-time response and 

analysis [18]. The adoption of big data in 

agriculture has also facilitated sustainable and 

efficient farming practices through the use of 

wireless sensor networks, machine learning, 

drones, and robotics [19]. Furthermore, big 

data technology has been utilized in China to 

promote the development of modern 

agriculture, with significant advancements in 

agricultural production and mechanization 

[20]. In order to enhance data collection 

capabilities, an intelligent agricultural 

environment big data mining system has been 

developed, integrating ZigBee and NB-IoT 

technologies for real-time monitoring and 

remote control of environmental parameters 

[21]. 

 

3. METHODS  

3.1 Research Design 

This study utilized a quantitative 

research design to investigate the diverse 

relationships in the dynamics of agriculture in 

West Java. A cross-sectional survey approach 

was chosen to get a picture of the current state 

of affairs. This approach allows for the 

collection of data from a diverse range of 

farmers, agricultural experts, and relevant 

stakeholders, thereby facilitating a 

comprehensive analysis of the interactions 

between weather prediction, resource 

management, land optimization, and the 

application of big data analytics. 

3.2 Sample Selection 

The sample selection process used a 

stratified random sampling technique to 

ensure representative and diverse 

participants. Stratification was based on 

geographic location, farming practices, and 

other relevant variables. The target sample 

size was 200 participants, drawn from 

different regions in West Java. This sample 

size was determined by Multivariate analysis 

in SEM-PLS. 

3.3 Data Collection 

Primary data was collected through 

structured questionnaires, interviews, and 

field observations. The questionnaire was 

designed to capture nuanced information on 

the awareness and effectiveness of weather 

prediction, resource management practices 

(including water, fertilizer, and pesticides), 

land optimization strategies, and utilization 

of big data analytics in agriculture. Interviews 

with key stakeholders provided qualitative 

insights, enriching quantitative data with 

contextual understanding. Field observations 

provide real-time validation of reported 

practices. 

3.4 Data Analysis 

The collected data will undergo a 

rigorous analysis employing Structural 

Equation Modeling with Partial Least Squares 

(SEM-PLS) [22]. SEM-PLS is chosen for its 

suitability in handling complex models and 

relationships among multiple variables [23]. 

The analysis proceeds through the following 

steps: Model Specification: A theoretical 

model is constructed based on the literature 

review and research objectives [24]. This 

model represents the hypothesized 

relationships among weather prediction, 

resource management, land optimization, big 

data analytics, and agricultural productivity 

[25]. Data Preprocessing: Data preprocessing 

involves cleaning, scaling, and transforming 

the data to ensure compatibility with SEM-

PLS requirements [26]. Missing data, outliers, 

and multicollinearity are addressed to 

enhance the reliability of the analysis. 

Measurement Model Assessment: The 

measurement model assesses the reliability 

and validity of the selected indicators for each 

latent variable [27]. This step ensures that the 

chosen variables effectively capture the 

underlying constructs. Structural Model 

Assessment: The structural model tests the 

hypothesized relationships among the latent 

variables. This step provides insights into the 

direct and indirect effects, allowing for a 

nuanced understanding of how weather 

prediction, resource management, and land 

optimization collectively influence the 

adoption of big data analytics and subsequent 

agricultural productivity. Bootstrapping and 

Significance Testing: Bootstrapping is 

employed to validate the robustness of the 

results, and significance testing is conducted 

to determine the statistical significance of the 

relationships within the model. 
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4. RESULTS AND DISCUSSION  

4.1 Demographic Sample 

Before delving into the interpretation 

of the structural equation modeling results, 

let's examine the demographic profile of the 

sample. This analysis provides a contextual 

understanding of the participants, shedding 

light on potential variations in responses 

based on demographic factors. 

Table 1. Demographic Sample 

Demographic Characteristic Frequency (n=200) Percentage (%) 

Gender   

- Male 120 60 

- Female 80 40 

Age Group   

- 18-30 years 45 22.5 

- 31-45 years 75 37.5 

- 46-60 years 60 30 

- Over 60 years 20 10 

Educational Level   

- High School 30 15 

- Bachelor's Degree 100 50 

- Master's Degree 50 25 

- Doctorate/Ph.D. 20 10 

Years of Farming Experience   

- 1-5 years 40 20 

- 6-10 years 60 30 

- 11-20 years 70 35 

- Over 20 years 30 15 

The demographic profile of the 

sample consisted of 120 males and 80 females, 

with the majority falling into the age group of 

31-45 years (37.5%). In terms of educational 

level, 50% had a Bachelor's degree, followed 

by 25% with a Master's degree. The majority 

of participants had 11-20 years of farming 

experience (35%). 

4.2 Descriptive Statistics 

The 200 participants, comprising 

farmers, agricultural experts, and 

stakeholders, provide a diverse 

representation of West Java's agrarian 

landscape. Descriptive statistics offer an 

overview of key variables. 

Table 2. Descriptive Statistics Variable 

Variable Mean SD Scale 

Weather Prediction 

Awareness 3.78 0.92 1-5 

Resource 

Management 

Practices 4.25 0.67 1-5 

Land Optimization 

Strategies 3.96 0.88 1-5 

Big Data Analytics 

Adoption 3.62 0.81 1-5 

 

The descriptive statistics provided in 

Table 2 offer an overview of key variables 

related to West Java's agrarian landscape. The 

variables include Weather Prediction 

Awareness, Resource Management Practices, 

Land Optimization Strategies, and Big Data 

Analytics Adoption. The mean and standard 

deviation values for each variable are 

presented. The mean values indicate the 

average level of each variable, while the 

standard deviation values show the degree of 

variability within the dataset. These statistics 

provide insights into the participants' 

awareness of weather prediction, their 

practices in managing resources, their 

strategies for optimizing land use, and their 

adoption of big data analytics in agriculture. 
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4.3 Measurement Model 

The measurement model assesses the 

reliability and validity of the latent variables, 

including Weather Prediction, Resource 

Management, Land Optimization, and Big 

Data Analytics. The following table 

summarizes the loading factors, Cronbach's 

alpha, composite reliability, and average 

variance extracted (AVE) for each indicator 

within these latent variables. 

Table 3. Validity and Reliability 

Variable Code 
Loading 

Factor 

Cronbach's 

Alpha 

Composite 

Reliability 

Average 

Variance 

Extracted 

(AVE) 

Weather 

Prediction 

WP.1 0.884 

0.905 0.940 0.840 WP.2 0.937 

WP.3 0.928 

Resource 

Management 

RM.1 0.791 

0.798 0.882 0.714 RM.2 0.877 

RM.3 0.863 

Land 

Optimization 

LO.1 0.844 

0.775 0.863 0.677 LO.2 0.785 

LO.3 0.839 

Big Data 

Analytics 

BDA.1 0.893 

0.840 0.904 0.758 BDA.2 0.877 

BDA.3 0.841 

The measurement model results 

indicate strong support for the reliability and 

validity of the latent variables. Weather 

Prediction (WP) indicators exhibit high 

loading factors, surpassing the recommended 

threshold of 0.7, indicating effective capture of 

the underlying construct. The Cronbach's 

alpha (0.905) and composite reliability (0.940) 

values indicate excellent internal consistency, 

while the AVE (0.840) demonstrates 

convergent validity. Similarly, Resource 

Management (RM) indicators show robust 

loading factors, with good internal 

consistency indicated by Cronbach's alpha 

(0.798) and composite reliability (0.882) 

values. The AVE (0.714) is slightly below the 

recommended threshold but still acceptable 

for convergent validity. Land Optimization 

(LO) indicators also exhibit strong loading 

factors, with good internal consistency 

indicated by Cronbach's alpha (0.775) and 

composite reliability (0.863) values. The AVE 

(0.677) is slightly below the recommended 

threshold but acceptable for convergent 

validity. Big Data Analytics (BDA) indicators 

show high loading factors, excellent internal 

consistency indicated by Cronbach's alpha 

(0.840) and composite reliability (0.904) 

values, and convergent validity demonstrated 

by the AVE (0.758). 

Table 4. Discrimination Validity  
Big Data 

Analytics 

Land 

Optimization 

Resource 

Management 

Weather 

Prediction 

Big Data Analytics 0.571    

Land Optimization 0.459 0.423   

Resource 

Management 
0.644 0.623 0.545  

Weather Prediction 0.653 0.714 0.532 0.617 

 

 

The correlation matrix describes the 

relationship between latent variables. 
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Discriminant validity is supported when the 

correlation between constructs is significantly 

lower than 1.000, indicating that the 

constructs are distinct and not measuring the 

same underlying concept. 

 
Figure 1. Internal Model Assessment 

 

4.4 Model Fit Test 

Model fit indices assess how well the 

estimated model aligns with the observed 

data. The provided values represent various 

fit indices for both the Saturated Model (a 

model with perfect fit) and the Estimated 

Model (the model derived from your data). 

Here, we will discuss the implications of the 

fit indices. 

Table 5. Model Fit Testing  
Saturated 

Model 

Estimated 

Model 

SRMR 0.103 0.103 

d_ULS 0.822 0.822 

d_G 0.430 0.430 

Chi-

Square 

304.332 304.332 

NFI 0.730 0.730 

 

Both the Saturated and Estimated 

Models have an SRMR of 0.103, suggesting a 

good fit as values close to 0 indicate 

acceptable fit. Both models have a d_ULS of 

0.822, which suggests that the Estimated 

Model adequately replicates the observed 

covariance structure. Both models have a d_G 

of 0.430, indicating a good fit as values close 

to 0 signify a close match between observed 

and predicted covariances. Both models have 

a Chi-Square value of 304.332, and without 

the associated degrees of freedom and 

significance level, it's not possible to make a 

definitive judgment on the significance. Both 

models have an NFI of 0.730, suggesting a 

reasonable fit. 

Table 6. R Square  
R 

Square 

R Square 

Adjusted 

Big Data 

Analytics 

0.602 0.592 

 

R-Square represents the proportion of 

variance in the dependent variable, Big Data 

Analytics, explained by the independent 

variables: Weather Prediction, Resource 

Management, and Land Optimization. The R-

Square for Big Data Analytics is 0.602, 

indicating that approximately 60.2% of the 

variance in Big Data Analytics is explained by 

the included independent variables. Adjusted 

R-Square is a modified version of R-Square 

that accounts for the number of predictors in 

the model and adjusts for model complexity. 

The Adjusted R-Square for Big Data Analytics 

is 0.592, considering both the explanatory 

power and the number of predictors. This 

accounts for the potential for overfitting, 
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providing a more conservative estimate of the 

model's explanatory power. 

4.5 Structural Model 

The structural model analysis 

involves examining the path coefficients, t-

statistics, and p-values to assess the 

significance and strength of the relationships 

between the latent constructs. Here, the 

results for the paths from Land Optimization, 

Resource Management, and Weather 

Prediction to Big Data Analytics are presented 

for the original sample (O), sample mean (M), 

standard deviation (STDEV), t-statistics, and 

p-values: 

Table 7. Hypothesis Testing  
Original 

Sample (O) 

Sample 

Mean (M) 

Standard 

Deviation 

(STDEV) 

T Statistics 

(|O/STDEV|) 

P 

Valu

es 

Land Optimization -> Big 

Data Analytics 

0.626 0.619 0.118 5.291 0.000 

Resource Management -> 

Big Data Analytics 

0.448 0.445 0.127 3.378 0.001 

Weather Prediction -> Big 

Data Analytics 

0.242 0.249 0.110 2.188 0.003 

The structural model analysis 

demonstrates the significance of Land 

Optimization, Resource Management, and 

Weather Prediction in influencing the 

adoption of Big Data Analytics in West Java's 

agrarian region. These findings, integrated 

with results from the measurement model, 

model fit assessment, demographic analysis, 

and R-Square analysis, provide a 

comprehensive understanding of the complex 

dynamics within the agricultural landscape. 

A. Land Optimization -> Big Data 

Analytics: The path coefficient of 

0.626 indicates a strong positive 

relationship between Land 

Optimization and Big Data Analytics 

adoption. The t-statistic of 5.291, 

along with the very low p-value (p < 

0.001), suggests that this relationship 

is statistically significant. This implies 

that as Land Optimization practices 

increase, there is a corresponding 

increase in the adoption of Big Data 

Analytics in agricultural land 

utilization. 

B. Resource Management -> Big Data 

Analytics: The path coefficient of 

0.448 signifies a positive relationship 

between Resource Management and 

Big Data Analytics adoption. The t-

statistic of 3.378 and a low p-value (p 

= 0.001) indicate the statistical 

significance of this relationship. The 

findings suggest that effective 

resource management practices 

contribute significantly to the 

adoption of Big Data Analytics in 

agriculture. 

C. Weather Prediction -> Big Data 

Analytics: The path coefficient of 

0.242 shows a positive relationship 

between Weather Prediction and Big 

Data Analytics adoption. The t-

statistic of 2.188 and a low p-value (p 

= 0.003) suggest statistical 

significance. This indicates that 

improved awareness and accuracy in 

weather prediction are associated 

with an increased likelihood of 

adopting Big Data Analytics in 

agriculture. 

DISCUSSION 

The adoption of Big Data Analytics is 

strongly influenced by practices related to 

Land Optimization. Farmers are utilizing 

advanced data analytics tools to optimize 

their agricultural activities and achieve 

efficient land management [28]. This includes 

the use of wireless sensor networks, machine 

learning, internet of things, drones, and 

robotics in farming techniques [29]. The 

application of big data analytics in agriculture 

has enabled farmers to optimize their 

activities sustainably and improve 
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productivity [30]. Additionally, the adoption 

of big data analytics in healthcare institutions 

is driven by factors such as patient 

management, quality decision making, 

disease management, and data management 

[31]. The use of big data analytics in 

healthcare allows for critical and timely 

decision-making, improving patient care and 

data management [32]. Overall, the adoption 

of big data analytics is influenced by the need 

for efficient land management in agriculture 

and the improvement of healthcare 

management through data-driven decision-

making. 

Effective resource management 

practices play a significant role in the 

adoption of Big Data Analytics (BDA) [33]. 

Prudent resource use is correlated with 

technological adoption, highlighting the 

importance of sustainability and efficiency in 

driving innovation in various fields, including 

agriculture [34]. The use of BDA in agriculture 

can help optimize resource allocation, 

improve decision-making processes, and 

enhance overall productivity [35]. By 

effectively managing resources, such as data 

storage, processing power, and network 

bandwidth, organizations can leverage BDA 

to gain valuable insights and make informed 

decisions [36]. This can lead to improved 

agricultural practices, increased efficiency, 

and better utilization of available resources 

[30]. Therefore, the adoption of BDA in 

agriculture can be facilitated by implementing 

effective resource management strategies that 

ensure the sustainable and efficient use of 

resources. 

Improved awareness and accuracy in 

weather prediction positively influence the 

adoption of big data analytics [37]. Farmers 

who are more attuned to weather forecasts are 

more likely to leverage data analytics for 

informed decision-making [38]. This 

highlights the interconnectedness of 

traditional knowledge and modern 

technology in agriculture [39]. The use of big 

data analytics, combined with weather 

forecasts, can help farmers make more 

informed decisions about crop 

recommendations [25]. By analyzing weather 

changes over time, big data analytics can 

provide continuous crop recommendations, 

taking into account seasonal variations [40]. 

Additionally, incorporating big data analytics 

into agriculture can help mitigate the impact 

of global warming and predict and mitigate 

changes in agricultural practices. Therefore, 

the integration of weather forecasts and big 

data analytics can enhance agricultural 

practices and improve decision-making for 

farmers. 

Implications and Recommendations 

Policymakers, stakeholders, and 

agricultural extension services should 

prioritize initiatives that enhance land 

optimization practices, resource management 

efficiency, and weather prediction awareness 

to foster the adoption of Big Data Analytics in 

West Java's agrarian sector. 

Tailored educational programs based 

on demographic characteristics can be 

instrumental in bridging knowledge gaps and 

ensuring equitable access to information and 

technology across different farming 

communities. 

Continued research and monitoring 

are essential to adapt strategies to the 

evolving needs of the agricultural landscape. 

Longitudinal studies could provide valuable 

insights into the dynamic relationships 

among key variables over time. 

 

5. CONCLUSION 

In conclusion, this research 

illuminates critical relationships governing 

the adoption of Big Data Analytics in West 

Java's agrarian landscape. Land Optimization, 

Resource Management, and Weather 

Prediction emerge as key drivers, underlining 

the importance of sustainable land practices, 

efficient resource management, and enhanced 

weather awareness. The demographic 

analysis underscores the need for tailored 

interventions to address diverse farming 

communities' specific challenges and 

opportunities. The robustness of the model fit 

and substantial explanatory power affirm the 

validity and relevance of the findings. Moving 

forward, policymakers, stakeholders, and 

farmers can leverage these insights to shape 



West Science Nature and Technology       89

   

Vol. 1, No. 02, December 2023: pp. 81-90 

informed strategies, fostering a harmonious 

integration of technology into agriculture. 

This study lays a foundation for continued 

exploration and innovation in the realm of 

data-driven agricultural practices, aiming to 

enhance productivity, sustainability, and 

resilience in West Java and beyond.
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