Identifying Hail Events Using Weather Radar and Satellite Data (Study Case in East Java on 23 December 2021)
DOI:
https://doi.org/10.58812/wsnt.v1i02.501Keywords:
Hail, Radar, SatelliteAbstract
Hail is an extreme weather phenomenon that rarely occurs in tropical regions such as Indonesia. However, if convective clouds are strong enough to develop higher, a hail event is likely to occur. Interestingly, on 23 December 2021, hail events occurred in four different nearby locations. Weather Radar data from the Juanda Meteorological Station and Himawari-8 Satellite data were used to analyse this hail phenomenon. The Radar measured reflectivity values, cloud top height, water vapour content, and the derivative product of the probability of hail occurrence. The Himawari-8 data were utilised to observe cloud top temperatures. From the results, it is known that the reflectivity value of hail is in the range of 45 dBZ to 55 dBZ, with a probability of hail above 80%, and the temperature at the top of the Cumulonimbus cloud is between -67.5°C to -82.5°C. These thresholds may be used in monitoring hail events, especially in the East Java region.
References
H. J. Punge, and M. M. Kunz, “Hail observations and hailstorm characteristics in Europe: A review,” Atmospheric Research, vol. 176, pp. 159-184, 2016.
J. T. Allen, I. M. Giammanco, M. R. Kumjian, H. J. Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, “Understanding Hail in the Earth System,” Reviews of Geophysics, vol. 58, 2020.
A. Fadholi, “Analisa Kondisi Atmosfer pada Kejadian Cuaca Ekstrem Hujan Es (Hail),” Simetri Jurnal Ilmu Fisika Indonesia, pp. 74-80, 2020.
P. Chatterjee, D. Pradhan, and U. K. De, “Simulation of hailstorm event using mesoscale model MM5 with modified cloud microphysics scheme,” Annales Geophysicae, vol. 26, no. 11, pp. 3545-3555, Nov. 2008.
F. P. Sari, A. P. Baskoro, and O. S. Hakim, “Effect of different microphysics scheme on WRF model: A simulation of hail event study case in Surabaya, Indonesia,” in AIP Conference Proceedings, Jul. 2018.
P. Meischner, “Weather radar: principles and advanced applications,” Springer Science & Business Media, 2005.
E. Wardoyo, “Pengantar I Radar Cuaca,” 2015.
Y. Y. Choi and M. S. Suh, “Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm,” Remote Sensing, vol. 10, 2013.
D. Kushardono, “Klasifikasi Spasial Penutup Lahan Dengan Data Sar Dual-Polarisasi Menggunakan Normalized Difference Polarization Index Dan Fitur Keruangan Dari Matrik Kookurensi (Spatial Land Cover Classification Using Dual-Polarization Sar Data Based On Normalized Difference Polarization Index And Spatial Features From Co-Occurrence Matrix),” Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, vol. 9, 2012.
M. Karmini, “Hujan Es (hail) di Jakarta, 20 April 2000,” Jurnal Sains & Teknologi Modifikasi Cuaca, vol. 1, pp. 27-32, 2000.
B. Tjasyono, “Klimatologi,” ITB Bandung, 2004.
A. M. Blyth, L. J. Bennett, and C. G. Collier, “High‐resolution observations of precipitation from cumulonimbus clouds,” Meteorological applications, vol. 22, pp. 75-89, 2015.
L. I. Purba, S. Humaidi, Y. Darmawan, Z. Zahedi, and T. I. Nasution, “Analysis Of Spearman Rank Correlation & Linear Regression Of Atmospheric Stability And Cloud Tops Temperature Of Himawari-8 IR Satellite Images (Case Study Of Hail On May 22, 2022,” Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram, vol. 11, pp. 476-484, 2023.
N. Dotzek and C. Price, R. L. Myer, “Lightning Characteristics of Extreme Weather Events.,” in Lightning: Principles, Instruments and Applications, H. D. Betz, U. Schumann, and P. P. Laroche, Eds, Springer, Dordrecht, 2009.
K. A. Browning and G. B. Foote, “Airflow and hail growth in supercell storms and some implications for hail suppression,” Quarterly Journal of the Royal Meteorological Society, vol. 102, pp. 499–533, 1976.
S. P. Nelson, “The influence of storm flow structure on hail growth,” Journal of Atmospheric Sciences, vol. 40, pp. 1965-1983, 1983.
S. Deni, “Study of meteorology to fulfill the requirements and criteria for determining the safety of early stage site, design and construction,” 2016.
C. D. Ahrens, “Essentials of meteorology: an invitation to the atmosphere,” Cengage Learning, 2014.
Giyarto, “Teknik Dan Metode Identifikasi Hujan Es /Hail Disertai Angin Kencang,” 2016.
G. Gosima, “Analisis Echo Citra Radar Doppler Single Polarisasi Pada Kasus Hujan Es Di Pengamatan Radar Cengkareng,” B.S. thesis, Meteorologi, STMKG, Tangerang, 2016.
D. S. Zrnic, G. Zhang, V. Melnikov, and J. Andric, “Three-body scattering and hail size,” Journal of applied meteorology and climatology, vol. 49, pp. 687-700, 2010.
D. Maharani, “Kajian Meteorologi Terhadap Hujan Es Di Ruteng,,” B.S. thesis, Meteorologi, STMKG, Tangerang, 2015.
D. Anggoro and B. Pramujo,“Study of Convective Cloud Lifetime and Movement using Radar Image and ECMWF model,” 2018.
R. Rinanto, N. P. R. Purwandari, and Y. D. Haryanto, “Analysis of Cloud Growth Phases When Nocturnal Hail Occurs (Case Study: Sekadau, 22 August 2020),” Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, vol. 20, pp. 57-61, 2023.
A. Dewita, M. C. PADV, and M. Hidayat,“The Utilization of SATAID For Extreme Weather Analysis (Case Study: January 27th, 2016),” in Proceedings International Seminar on Aerospace Science and Technology (ISAST), LAPAN, 2016, pp. 163-170.
M. Kunz, and M. Puskeiler, “High-resolution assessment of the hail hazard over complex terrain from radar and insurance data,” Meteorologische Zeitschrift, vol. 19, 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Arif Krisna Widadi, Maulana Sunu Pratama
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.